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Inviscid hypersonic flow over plane power-law bodies 
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(Received 22 December 1965 and in revised form 26 May 1966) 

Theoretical solutions based on the expansion scheme for large x and large M,, as 
proposed by Freeman (1962)) are obtained for the asymptotic inviscid flow over 
plane bodies of the shape y/d = (x/d)" in t h e  range 9/y < m < Q where blast 
wave theory applies as a first approximation. In  particular, the second-order 
terms, which are necessary to satisfy the body boundary conditions for the 
normal velocity are computed. The magnitude of the second-order terms is found 
to  increase from zero at  m = 3/71 to infinity at m = 9 .  

As a comparison with theory, experiments a t  M, = 8.3 were made with two 
plane power-law bodies in the range Q/y < m < 3 (at m = 4 and 8) and on a plane 
parabola with a tangent wedge nose. These consisted of the determination of 
shock-wave shapes, surface pressure distributions and detailed investigations of 
the distribution of pitot and static pressure across the shock layer. 

The experimental results are in good agreement with the theory in the case 
m = 4, where the second-order effects are small. At  m = Q the region of validity 
of the theory is limited to much larger distances from the nose of the body and 
larger Mach numbers. Accordingly, the prediction for the deviation from first- 
order theory, although being correct in sign, is too small. Shock-wave shapes on 
bodies of the same power but of different size are correlated by the similarity 
theory when scaled with respect to the dimension d.  

The experimental results obtained with the wedge-parabola are in very good 
agreement with a characteristics solution by C. H. Lewis (1965, unpublished). 

1. Introduction 
The theoretical part of this investigation is concerned with the inviscid, 

asymptotic flow field at large distances from the blunt nose of an asymptotically 
slender body when the free-stream Mach number is large and where the body still 
supports a strong shock wave. The appropriate equations of motion are simplified 
to the hypersonic small-disturbance equations developed by Hayes (1947)) 
Goldsworthy ( 1952) and Van Dyke (1954). This simplification relies on the hyper- 
sonic similarity parameter Mar being finite with M, large and T small, where M, 
is the free-stream Mach number and T is a slenderness parameter. In  deriving the 
hypersonic small-disturbance equations, terms of order r2 or M,' are neglected. 

Under the assumption of a strong shock wave, these equations possess the self- 
similar solutions obtained by Lees & Kubota (1957)) provided that the shock- 
wave shape is of the form ys - xp. The solutions have direct physical significance 
in the range 2/13 +j) < ,~i. 6 1, where j = 0 for plane flow and one for axisym- 
metric flow, the body being given by yb N xm and here m = p. The solution for 
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,u = 2/(3 +j) is singular since it does not satisfy the surface boundary condition. 
This singular solution corresponds to the solution of the one-dimensional 
unsteady problem of a constant-energy explosion obtained by Taylor (1950) and 
Sedov (1959) and has been interpreted by Lees (1955) and Cheng & Pallone (1956) 
as the solution appropriate for the blunt flat plate or cylinder. This interpretation 
is usually referred to as the ‘blast-wave analogy’. 

If the drag of a body for which the similar solutions apply is considered, the 
shock conditions give the pressure to be proportional to x2b-l). Since similarity 
applies, the body pressure will also be proportional to x2(P-l). The body shape is 
ycc xm, and with ,u = m, the drag will be proportional to  /x3(P--l)xiP dx which varies 
as const. + X @ + ~ ) P - ~ .  The constant can be interpreted as the drag of the blunt nose, 
the other term as the drag of the afterbody. For ,u > 2/(3 +j) it  is seen that, for 
large x, the afterbody drag dominates, whereas for ,u = 2/(3 +j) the two terms are 
of equal order. Hence the drag of a body with m < 2/(3 +j) is finite and dominated 
by the effect of the blunt nose. This would suggest that the similar solution for 
,u = 2/(3+j)  is a first approximation for the flow over all bodies in the range 
0 < m < 2/(3 +j). The effect of the asymptotic body variation then appears as 
a higher-order term. 

The similarity solutions fail near the nose, where the small disturbance 
assumptions break down because of the blunt nose. It is possible however to 
treat the effect of the blunt nose as an upstream condition on the asymptotic 
flow by using the condition that entropy remains constant along streamlines. 
This upstream condition is not satisfied by the similar solutions in a layer near 
the body which has become known as the ‘entropy layer’ or ‘cool core’, because 
the entropy and temperature are required by the upstream condition to be lower 
than the predictions of the similar solutions. 

Attempts to formulate a rational expansion procedure have been made by a 
number of authors, among them Guiraud (1958, 1964), Freeman (1962), Yakura 
(1962)’ Vaglio-Laurin (1964), Zolver (1964) and Messiter (1965). It will be suffi- 
cient for the purpose of this introduction to describe only a few of the results. 

Yakura considered the ‘inverse problem’, in which the shock wave is given 
and the body shape is to be determined, and thus started with an entropy distri- 
bution which was known in terms of the stream function. This yielded an inner 
(entropy-layer) solution which could be joined by matching to an outer similar 
solution. Although the inverse approach removes many difficulties from the 
problem, it is open to criticism because, by choosing the shock-wave shape, one 
specifies the transition from the entropy layer to the outer solution and thus 
applies an artificial constraint to the system. 

Guiraud (1958) considered the ‘direct problem’ for the case of the blunt flat 
plate or cylinder and obtained the order of magnitude of the error term intro- 
duced in the Sedov solution by the effect of the entropy layer. 

Freeman (1962) considered the direct problem for power-law bodies in the 
range 0 < rn < 1 and obtained the order of magnitude of the error terms intro- 
duced in the respective first approximations in expansions in inverse powers of 
MZ for large x. He found that, in the range 0 < m < 2/ (3+j) ,  where the first 
approximation takes no account of the body shape, the error is due to the effect 

. 



Hypersonic*fEow over power-law bodies 317 

of the body or entropy layer, depending on whether m is greater or less than 
2/(3 +j) y respectively. In  the range 2/(3 +j) < m < 1, the entropy layer was 
again found to give the important error, and only for m > 2(y + 1)/((3 + j )  y + 2} 
was the error term as small as that given by Van Dyke (1954) for slender bodies, 
and assumed by Yakura (1962), that is of order M z 2 .  Figure 1 shows some of the 
results of this work in the form of a plot of error exponent versus m. The approach 
adopted here will be that used by Freeman and the analysis will be restricted to 
plane flow in the range +/y < m < $, where the first approximation is the Sedov 
solution and the first perturbation is due to the body. 

2(Y+,l)/3Y+2 

m 

FIGURE 1. Order of magnitude of error of &&order theory, plotted as the exponent of 
M z 2  versus m, as obtained by Freeman (1962), y = 1.4. 

Compared to the number of theories available for the blunt body problem, 
experimental data is limited. The most complete set of data is that of Kubota 
(1  957) who obtained surface-pressure distributions, shock-wave shapes and 
Pitot-pressure traverses through the shock layer on three axisymmetric power- 
law bodies, m = +, # and $ at Mw = 7-7. All other available data are restricted to 
shock-wave shape and surface-pressure distribution, and very few deal with 
power-law bodies other than m = 0. Among them are the works of Hammitt & 
Bogdonoff (1956), Freeman, Cash & Bedder (1964) and Peckham (1965). 

In  order to determine the flow quantities in the shock layer from Pitot-pressure 
measurements alone, Kubota relied on the assumptions that the total tempera- 
ture is constant and that the streamline slope is independent of the distance 
normal to the body. Although the second assumption becomes more and more 
accurate as m-t 1, it is certainly not satisfactory for m < 2/(3 +j), especially for 
the plane case. One would therefore like to measure additional quantities in order 
to avoid making this assumption and, if possible, to achieve some redundancy in 
the measurements to serve as a check. 
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density p‘ = PIPm, 

x-velocity 
y-velocity v‘ = v/a,, 

u’ = {(u/U,) - l}/S, 

2. Theory for M, + cc 
Derivation of differential equations 

In  accordance with the small-disturbance assumptions, it is appropriate to 
choose the following set of dimensionless variables : 

where z, y are Cartesian co-ordinates, 6 = M z 2  and am is the free-stream sound 
speed. If the primed variables are defined as of order one, and terms of order 6 are 
neglected, the equations of motion become the hypersonic small-disturbance 
equations: 

a a 
- (p’y’j) +-’ (p’yl’v‘) = 0, 
ax’ aY 

(&+v$)$ = 0, 

where y is the ratio of specific heats. 
The boundary conditions on the shock wave on which 

become 

I tan2 $’( 1 - C O P $ ’ ) ,  u’ = __ 
2 

Y+l 

tan $’( 1 - cot2 $’). , A  
‘0 =- 

Y f l  J 
The boundary condition on the body which requires the body surface to be a 
streamline is d = dy’/dx’ on y‘ = gh. (3 b)  

The equation and boundary condition for u‘ are not coupled with the remaining 
equations and need not be considered in a solution for p‘, p’ and v’. For the case 
of a strong shock wave, tan2$’ is large, and the cot2q5r terms in (3a)  may be 
neglected. 
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The equations can now be written in terms of a similarity variable 7 = $ I / $ ; ,  

where the stream function $‘ is defined by 

ay/ayi = ptyi j ,  a p / a x l  = - p i y l j v t ?  

and $: = y i j + l  = (coxt21(3+j)}j+1 

is the value of $’ on the shock wave. Considering the plane case,j = 0, for m < $, 
equations ( 3 )  become 

avi $ ~ a v !  1 apt 
ax1 X I  a7 x t g  a7 
- _ _ _  +-- = 0 

The effect of a power-law body of the form y /d  = (x/d)”, where $/y < m < $, can 
now be incorporated in an expansion for the flow variables in the outer region as 
follows (see Freeman 1962): 

The first-order terms in these expansions represent the blast-wave approxima- 
tion. The coefficients Co and C, are functions of m and y and are to be determined 
later. If Co is to be of order one, the ratio of the scales for the primed co-ordinates 
in ( 1 )  requires that the body shape in primed co-ordinates be given by 

yA = Xlm&l-#m. 

This determines the magnitude of the perturbations introduced by the body in 
the outer expansions (6). Substituting the expansions (6) into equations (4), and 
collecting terms of equal order in 6, the first- and second-order equations are 
independent of x’: 
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The equation for the conservation of entropy along streamlines has been inte- 
grated in equations (7) and (8) using the shock-wave shape, equation ( 5 ) .  The 
equations for Yo and Y, result from the definition of the stream function. 

The similarity variable 7 is taken equal to one on the &st-order shock wave, 
y’ = Cox‘%. The strong form of the shock-wave boundary conditions must be 
appliedat thenew locationof the shock. It is convenient to expand these boundary 
conditions as a Taylor series in (ys- 1) such that the second-order boundary 
conditions can be given on 7 = 1 in terms of first-order derivatives. The boun- 
dary conditions are then obtained as: 

(9) 
G(1) = 8/9(r+ I ) ,  

RO(1) = (Y+ l ) / ( Y -  1 ) ,  YO(1) = 1, 
K ( 1 )  = 4 / 3 ( Y +  I), 

and rl(l) = ___ 
3(Y+l: , ,, ,,-A 

The equations can be solved without considering the equations and boundary 
conditions for Yo and Y,. Furthermore, since the second of equations (7) and the 
second of equations (8) have already been integrated using the shock conditions 
for Po, R,, P, and R,, the boundary conditions for Po and Pl cannot be used again. 
There remain five boundary conditions, one of which-<(O) = m/Cl-serves to 
determine the unknown coefficient C, which is common to all the perturbation 
quantities. The boundary condition for Y,(O) also gives C,, but this is not an 
independent condition. It merely leads to the identity Yl(0) = (l/m)K(O). This 
is a useful check in the numerical calculations. 

Series solution for smull 7 and matching with entropy luyer 

The solution for the first-order equations, which has been given by Sedov (1959) 
analytically, has the following behaviour for small 7 : 

pj = c;s‘-+P,(o), 
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Substituting these expressions in equations (8) the coefficients become known 
functions of 7. The resulting equations have t,he following solutions for small 7:  

where A = -  + [g(y + 1) P0(0)]l~7, 
Y - 1  

As is to be expected, these solutions fail at m = g/y, and m = 8. At both values 
the series are characterized by the confluence of exponents of 7, and thus by the 
appearance of logarithmic terms. 

The difficulty associated with these logarithmic terms lies in the matching of 
this solution with the solution in the entropy layer. In this region a solution can 
be obtained using the conservation of entropy along a streamline close to the 
body from the point where the streamline crosses the nearly normal shock wave. 
It is necessary to relax the smalI disturbance assumptions for this purpose, such 
that 1 

-~ 
2 

Ps = ~ y + l  l + C O t 2 $ ’  

Such a procedure gives the behaviour of the density and normal distance at  the 
outer edge of the entropy layer. These inner solutions are matched with the outer 
solutions to the second order so long as m is not equal to $ /y  or 8. At m = +/y the 
difficulty lies in the matching of the logarithmic term. 

The problem for m = 0 is characterized by a perturbation of the shock-wave 
shape of the form P1/Yx’*/y in the analysis of Freeman (1962). This will always 
lead to the difficulty encountered in the above case m = #/y, that the logarithm 
cannot be matched. Guiraud (1964) and Messiter (1965) avoid this difficulty by 
disallowing a shock-wave perturbation of this form and considering the next 
perturbation to be of the form P ( l - l / ~ ) x f ( ~ / y ) - ~ .  Although this allows the entropy 
layer to be matched with the outer solution when m = 0, it does not remove the 
difficulty when m = $/y, since then a perturbation of the form S1-l/yx‘%/y appears 
from the body. The reason for the failure of the matching procedure when m = 8/y 
is not obvious, but it is probable that similarity solutions of this type are then 
not availab1e.t 

Energy considerations and numerical solution 
By considering an energy balance of the flow it has been shown by various 
authors that 

f One of the referees of this paper has drawn my attention to  a more recent publication 
by Guiraud, Vall6e & Zolver (1965) which goes into the problem m = 0 in more detail. 
It also presents a study of the relation between the direct and inverse approaches and 
a discussion of the basis of asymptotic hypersonic flows. 

21 Fluid Mech. 27 
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where 0, is the drag to x of the body. (See Kubota 1957; Preeman 1962; Guiraud 
1964.) Substituting the expansions (6) in (13) and collecting terms of equal order 
in 6, the followii~g results are obtained. 

(14) G 4 = D m l p m  U % d ,  

0 6  

0.5 

0.4 

0.3 

0 2  

0.1 

0 
0 

FIGURE 2. Solution of equations ( 7 ) .  First-order quantities, rn < p ,  y = 1.4. 

where, for ̂ J = 1.4, 

and D, = drag to x' = 00.- 

While (15) provides yet another means of checking the value of C,, the constant 
Co cannot be obtained from (14) without the knowledge of D,. This can only 
be obtained from the pressure distribution on the nose of the body, which 
is outside the region of validity of the present theory. The asymptotic approach 
is thus unable to determine the magnitude of the first-order quantities. 

Equations (7)  and (8) were solved numerically on the London University 
Mercury Computer for 9 values of m in the range 3/y < m < 3 when y = p. 
The integrals I. and Il were also evaluated and the results are presented in 
figures 2-6. Figure 2 shows the solution of the first-order equations in the 
form Po(q), Ro(q) and q(y) .  The inadequacy of these near the body (q = 0) is 



Hypersonic flow over power-law bodies 323 

0 5  

0.4 

0-3 

P I  

0.2 

0 1  

0 

7 

FIGURE 3. Solution of equations (8) for Pl(m, q ) .  Second-order pressure, y = 1.4. 
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FIGURE 4. Solution of equations (8) for R,(m, q). Second-order density, y = 1.4. 

21-2 
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0.4 

0.2 

0 

- 0.2 

VI 

- 0-1 

- 0 6  

- 08 

- 1.0 

0 

FIGURE 5. Solution of equations (8) for Vl(m, v). Second-order normal velocity, y = 1-4. 

- 0 4  

- 0 8  

- 1.2 

- 1.6 

- 2.0 

- 2.4 
FIGURE 6. Variation of coefficient of second-order quantities with m, y = 1.4. 
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evident from the zeros of R, and V,. Figures 3-5 give the second-order solution in 
the form of Pl(q ,  m), K(7, m) and Rl(7, m) respectively, and show that the zero of 
V, is removed unless m = $ while the zero in density remains. Figure 6 gives the 
behaviour of the coefficient C, as a function of m. The behaviour of V, near 7 = 0 
made it difficult to determine q ( 0 )  from the computer results, since the calcula- 
tions had to be stopped short of 7 = 0 to avoid the infinite value of some of the 
derivatives. In  order to avoid this difficulty, the independent variable was trans- 
formed to [ = 7%m-1/y, and the calculations were repeated with [ as independent 
variable, giving a straight line for V,([) near [ = 0 which could be extrapolated 
accurately to 

The limit cases of the range, m = 8 and m = 8/y,  were included in the calcula- 
tions, and the results obtained earlier are borne out by the behaviour of V,. When 

V,(O) = 0 giving C, = -a. The three methods of obtaining C, afforded by the 
boundary conditions for V, and Y, and equation (15) give the same result. 

= 0, giving V,(O) = m/Cl and hence C,. 

m = 2  3/y, V, has a logarithmic singularity a t  7 = 0, giving C, = 0 and when m = $, 

1 .o 

0 8  

0 6  

0 4  

0 2  

0 0.1 0.4 0 6  0 8  1.0 

YlY, 
FIGURE 7. Behaviour of the solutions of 
equations (7) and (8) normalized with respect 
to values on the shock wave. 

m = $, a = (CJC,) x dm--%, y = 1.4. 

1 .o 

0.8 

0.6 

0 4  

0.2 

0 0 2  03 0 6  0 8  1.0 

YlYs 
FIGURE 8. Behaviour of the solutions of 
equations (7)  and (8) normalized with respect 
to values on the shock wave. 

m. = Q,a = (Cl/Co)dm--%, y = 1.4. 

Practical ~mplicut~ons of theoretical results 

The range of x / d  for which this analysis can be expected to describe the flow 
reasonably accurately can now be estimated by requiring that 

~1-iImx‘m-Q = (x/d)m-$ < 6 

for some small E .  The range of validity is then restricted to x / d  > (~)-1@-m), which 
for E = 0.3, say, y = $ and m = 3/y is about 500. If m is nearer Q ,  say, for example 

a body of, say, 50ft. length, d would have to be smaller than about 10-lOin., 
which is well below the limits of the theory anyway because of restrictions to 
inviscid and continuum flow. The practical use of the theory is thus clearly 

m=5. 8 ,  x /d would have to be larger than 3 x 1012. If this is to be applicable on 
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limited. However, it does give an insight into the way in which the blast-wave 
solution is approached asymptotically and the physical reasons for the deviations 
from it. The solutions in the outer region have been calculated to second order for 
m = & and m = Q for various values of a = (CJC,) (x/d)"-%. They are shown in 
figures 7 and 8 normalized with respect to values on the shock wave. In  shock- 
normalized co-ordinates the effect of the perturbation is very small in the case 
of pressure and density, and slightly larger in the case of normal velocity. 
Pressure and normal velocity are increased while the density is decreased by the 
perturbation. All these curves have been cut off at the point on the body surface 
which corresponds approximately to their lower limit of validity in 7, that is, 
where they have to be matched with the inner solution. 

3. Experiments at M, = 8.2 
Experimental conditions, models and technique 

For an ideal test of the above theory, experiments should be made at very high 
Mach number and Reynolds number. Both of these conditions could only be 
satisfied to a limited degree by the available facility and instrumentation. The 
hypersonic gun tunnel a t  Imperial College, which has been described in detail by 
Needham (1963) was used with a contoured nozzle a t  H, = 8.2 using air as the 
test gas. The free-stream stagnation temperature as measured by a thin-wire- 
resistance thermometer was 665 "K, and the stagnation pressure was 1560 psia. 
Under these conditions the viscous length scale, v,lU, in the free stream is about 

The experiments were made a t  two values of m in the range g/y < m < 3, 
(m  = & and m = 9) on plane models. In  order to compensate for the great differ- 
ence in the range of validity of the theory between these two values of m, the 
length scale d was chosen as d = 0.010in. for m = 8 and d = 0.225in. for m = 4. 
The models were 10 in. long and 5 in. wide while the working section of the gun 
tunnel has a useful core of about 6in. diameter. Two smaller parabolas 
(d = 0.100in. and d = 0.156in.) available from pilot experiments were also 
tested. The nose of the largest parabola could be replaced by a 30" half-angle 
wedge which was tangent to the parabola. Figure 19, plate 1, shows the large 
parabola with traversing gear and Pitot and static probes. 

The quantities measured were surface-pressure distribution, shock-wave shape, 
Pitot pressure, static pressure and streamline slope. The last three of these were 
measured alonglines normal to the body surface at several stationson each model. 
The static pressure was measured with a probe which was made similar to that 
reported by Behrens (1963). This consists of a 10" half-angle cone followed by 
a 1 mm diameter stainless steel tube with 4 pressure holes 15 tube diameters from 
the cone tip and about 33 tube diameters upstream from the probe support. This 
probe was calibrated in the shock-layer of a 20' wedge. The reading was found to 
be insensitive to changes of incidence of f 3" which corresponds approximately 
to the amount by which the streamline slope changes from body to shock wave 
along lines normal to the body surface. The probe inclination was held constant 
a t  the approximate average streamline slope for each traverse. When the static 

in. 
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pressure probe protruded through the shock wave, the interference between 
probe and shock caused the reading to be unreliable. All such readings were 
discarded. 

The streamline slope was measured by bisecting the angle between two inter- 
secting weak waves. These were generated from strips of adhesive tape 0.0015 in. 
thick and fixed to the model surface, and from a similar set of adhesive strips 

8 

6 

M 4  

2 

C 

I I I I 

Body surface Shock wave 

FIGURE 9. Comparison of Mach number as obtained by various methods. m = Q, x/d = 560, 
d = 0.010in. 0, method of weak waves; 0, static and Pitot pressures; W, shock-wave 
slope. 

fixed to a sharp flat plate opposite the model and outside the shock wave. 
Although this method is not very accurate (see figure 9), it gives a Iarge quantity 
of data in one experimental run and is thus very useful for pilot experiments. 
The Mach number can also be obtained by this method and this is compared for 
a particular traverse with the Mach number as obtained from Pitot- and static- 
pressure measurements in figure 9. The agreement is within an accuracy of f 8 %. 

Experimental error 

The smallest error in all these measurements was that in the shock-wave shape 
which was measured from enlarged schlieren photographs to about f 0.015 in. 
The error in the static-pressure measurements was estimated to  be about f 8 yo, 
while that in the Pitot-pressure measurements was about & 5 yo. The error in the 
free-stream stagnation temperature is approximately i- 15 O K ,  stagnation pres- 
sure about 3 yo while the Mach number is uniform at 8.2 f 0-2. 

4. Experimental results and comparison with theory 
Surface pressure distribution 

In  order to obtain the coefficient C, of the first-order quantities, the experimental 
pressure distributions were integrated numerically to give the drag to x, Dz, as 
a function of x.  The asymptotic drag D ,  was then obtained by fitting the 
expression D, = D, - a ( ~ / d ) ~ - %  
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to the experimental curve. An example of such a fit is given in figure 10 for the 
parabola. D,, substituted into equation (14)) then gives C,. Using these values 
of C, all quantities can be obtained from the theoretical results to second order. 
A41though this method gives only an estimate for C,, it is the result of an integra- 
tion of experimental quantities and thus likely to be more accurate than the 
alternative method of comparing the magnitude of first- and second-order 
quantities directly. It also does not involve the use of any second-order quantities 
apart from the actual body shape. 

5 

2 1.0 

8 v 

6 

.3 . 

0.1 
0.1 1 -0 10 

xld 
FIGURE 10. Fit of D,  -a(s/~Z)~-+ to  experimental drag, rn = $, 

d = 0.225in., C,  = 1-4. 

The pressure distributions on the parabola and wedge-parabola (figures 11 (a) 
and (b)) are seen to be in fair agreement with the present theory, although the 
effect of finite free-stream pressure manifests itself a t  large values of x/d. Near 
the tail end of the model this effect is cancelled again by a fall in pressure which 
was observed to coincide with the loss of two-dimensionality of the flow. These 
two effects are best observed in figure 11 (b), where the experimental pressure 
distribution for the wedge-parabola is compared also with a characteristics solu- 
tion by Lewis (1965, unpublished). The deviation from the characteristics solution 
at  large x/d demonstrates the effect of loss of two-dimensionality while the devia- 
tion of the second-order theory from the characteristics solution demonstrates 
the effect of finite free-stream pressure. 

In  the case m = Q ,  figure 11 ( c ) ,  the weak-shock effect (finite free-stream 
pressure) is seen to be very strong, and experiment agrees fairly well with the 
tangent-wedge approximation. However, if this effect is corrected approximately 
by comparing p -pm with the second-order pressure, the agreement is seen to be 
quite good. All three experimental pressure distributions show a consistent ‘dip ’ 
in pressure in the region between x = 1 and x = 3 in. This has also been observed 
by Needham (1965) and is associated with a local non-uniformity in the test 
flow. 
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FIGURE 11. (a)  Surface-pressure distribution on parabola, m = 4, d = 0.225 in. ( b )  Surface- 
pressure distribution for a wedge-parabola, d = 0.225 in., xld measured from virtual 
origin of parabolic afterbody. (c) Experimental pressure distribution, m = +, d = 0.010 in. 
0, P / ( P ~  u",; A, ( P - P ~ ) / ( P C C  u",). 
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Shock-wave shupe 

The shock-wave shapes as measured on three parabolas with different values of d 
are plotted in figure 12 (u) as y,/d versus xld. It is seen that the shock waves of all 
parabolas are correlated onto a single curve in these co-ordinates. This was found 
to be true also for the results of Peckham (1965) and Kubota (1957) for axi- 
symmetric power-law bodies. It seems reasonable to expect that shock-wave 
shapes on bodies of the shape yb/d = (x/d)m collapse for a particular m onto a single 
curve in these co-ordinates for large M,. 

For the other twomodels the shock-wave shapes are plotted in figures 12 ( b )  and 
12 (c) and compared with the present theory using C,, as obtained from the drag. 
As in the pressure distributions, the magnitude of the second-order quantities is 
seen to be much larger for m = Q than for m = Q. and the way in which the 
second-order effect modifies the first-order theory is in the right direction, except 
in the case of the parabola, where the theoretical prediction for ys is 10 yo less 
than the experimental result. Although a better fit could have been achieved by 
choosing C,, and C, for fit, this was not done here in order to give a true comparison 
of theory and experiment. 

In  the case of the wedge-parabola (figure 12 ( b ) )  a comparison could again be 
made with the characteristics solution of C. H. Lewis (1965, unpublished) and 
the agreement is very good. The discrepancy between experiment and charac- 
teristics solution at  small values of x/d is largely attributable to experimental 
error amounting to no more than 0.025 in. The shock-wave shapes are shown in 
the form of schlieren photographs in figures 20 and 21, plate 1. 

Shock-layer traverses 

Pitot- and static-pressure traverses were made a t  five stations on the largest 
parabola (d = 0.225in.), three stations on the wedge-parabola, two stations on 
the 9-power-law body and two stations on the smallest parabola (d = 0.100in.). 
By assuming that the stagnation temperature is constant throughout the flow, 
all the flow variables can be calculated from these measurements. Figure 13 shows 
the static-pressure distribution in the shock layer of the parabolas plotted against 
xld, where 2 is the distance normal to the body surface measured from the body 
surface. The static pressure as measured on the surface of the large parabola at  
the traverse station is included in figure 13 as a point on the vertical axis. It is 
seen that this pressure agrees well with the extrapolation of the pressure traverses, 
giving additional confidence in the static-pressure probe. Although the two- 
dimensionality of the flow is doubtful on the large parabola for x/d > 30, such 
traverses have been included in figure 13 to show the general trend. 

Figure 14 shows the experimental density distribution across the shock layer 
of the parabolas at various traverse stations. The experimental density and static 
pressures measured in the shock layer of the Q-power-law model are plotted in 
figure 15. It is evident from figure 14 that the effect on the density of the weak 
shock wave is considerable, the density on the shock wave being less than 50% 
of the value on a strong shock wave for large xld. It can therefore be expected that 
the density profiles will not be in good agreement with the theory. This is evident 

a 



Hypersonic Jlow over power-law bodies 331 

1 I00 

I I I 1 I 

1 

200 

100 

10 

< 

1 100 

’5 10 100 500 
Xld 
(c) 

d = 0.156 in.; A, d = 0.100in. (b )  Shock-wave shape on wedge-parabola. ----- , first- 
FIGURE 12. (a) Shock-wave shape on three plane parabolas. 0, d = 0.225 in.; 0, 

order theory ; - . -. - , second order theory; -, characteristics. (c) Shock-wave shape, 
m = +. 



332 

A " \ I I 
Strong-shock .wave 

H .  G. Hornung 

20 

8 10 P 
% 

< 

I 

0 

Shock wave Shock wave 

I I I L 

10 20 
Zld 

0 10 20 

zld 
FIGURE 14. Experimental density distribution through shock layer, rn = *, - , mean line 

through experimental points; V, d = 0.225 in.; 0, d = 0.100 in. 



Hypersonic3ow over power-law bodies 333 

even from a cursory inspection of the density profiles for m = Q, whose shape is 
considerably different from the density profile of figure 8. The general shape of 
the density profiles on the parabola, however, is similar to the theoretical 
prediction. 

The strong-shock-wave assumption is not so serious in the case of pressure and 
velocity, and in the hope that the effect of the error in density on these quantities 
is not too strong, the pressure and normal velocity were compared with theory 
in figures 16 and 17. The normal velocity v was calculated from the streamline 
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FIGURE 15. Experimental static-pressure and density distributions through shock layer, 
m = #. -, Mean line through experimental points; 0 ,  pressure, p /pm ; v, density, pip,. 

slope and local velocity which were obtained by the method of weak waves and 
from the pressure measurements respectively. It is seen that in both cases the 
experimental results for the parabola are in very good agreement with theory. 
In  the case m = Q the pressure distribution is of the right general shape, but 
considerably higher than the theoretical prediction. The weak-shock effect 
(finite free-stream pressure) would account for some of this discrepancy. The 
normal velocity for m = Q is also under-estimated by the theory. 

An attempt to fit the present theory to the present experimental results for 
m = Q must, however, be expected to meet with marginal success only, since the 
theory requires a value of x/d > 500 for convergence, and the shock wave is 
already very weak a t  x/d = 560. 

Figure 18 shows the results of one of the shock-layer traverses on the wedge- 
parabola in comparison with the characteristics solution of C. H. Lewis (1965, 
unpublished) at  the same station. Except for a deficiency in static pressure of 
about 8 yo, which is probably attributable to lack of two-dimensionality at this 
station (x/d = 36), the agreement is seen to be very good. 
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FIGURE 16. Pressure distribution through shock layer, comparison with theory. Experi- 
ment: 0, xld = 12.25, m = 0.5; A, x/d = 18.7, m = 0.5; 0 ,  x/d = 56, m = 0.5; 
0, xld = 560, m = 0-625. Theory: x/d = co and xld = 50, m = 0.5. 
FIGURE 17. Normal velocity distribution through shock layer, comparison with theory. 
Experiment: A, m = 0.625, x/d = 560; 0, m = 0,5, x/d = 56. Theory: xid = co and 
x/d = 50, m = 0-5. 
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FIGURE 18. Shock-layer traverse, wedge-parabola, x/d = 36; comparison with character- 
istics solution. Experiment: 0, measured static pressure, p ;  A, measured Pitot pressure, 
pt , ;  0, derived velocity, q ;  0, derived Mach number, M ;  ___ , method of characteristics 
(Lewis 1965, unpublished). 
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5. Conclusions 
Theoretical solutions, based on the expansion scheme for large z and large X, 

as proposed by Freeman (1962), were obtained for the asymptotic inviscid flow 
over plane bodies of the shape y/d = (x/d)m in the range $/y < m < 8. These 
second-order solutions enabled the condition that the body surface be a stream- 
line to be satisfied. 

The magnitude of the second-order term was found to increase from zero at 
m = 81-y to infinity at m = 8. At these two points it is probably necessary to 
adopt a more sophisticated approach since, a t  m = Q/y, a matching condition 
cannot be satisfied, and at m = 8 the expansion does not converge. 

A comparison of experimental shock-wave shapes on plane parabolas of 
different length scales showed that the significant length scale of the shock-wave 
shape is the same as that for the body, the shock waves for all parabolas collapsing 
onto a single curve in the body co-ordinates yld,  xld. The same was found to apply 
to the axisymmetric power-law bodies of Kubota (1957) and Peckham (1965). 

The deviation of the experimental results from first-order theory was generally 
in the same direction as predicted by second-order theory and the magnitude of 
the deviation was much larger at  m = Q than at m = 8. This is in agreement with 
the theoretical prediction. The accuracy of the experimental results was insuffi- 
cient for a conclusive comparison of the shape of the deviations with the second- 
order quail ti ties. 

The extent of the range of validity of the theory varies with m. An estimate of 
the range of validity taking C,/C, = 1 is pessimistic since the experimental deter- 
mination of C, shows that this ratio is smaller than one. The lower limit of the 
range of validity appears to be about x/d = 10 for m = 8 and x/d = 500 for m = Q. 
These are experimentally feasible conditions although the Mach number in the 
present experiments was too low for a good comparison in the case m = 9. 

A comparison of the experimental results with a characteristics solution for the 
wedge-parabola confirms the utility of the gun tunnel as a facility for making 
aerodynamic measurements in steady flows. It also shows that characteristics 
solutions could be used with confidence as a test of the theory for values of xld 
outside the range of experimental facilities. 

This work is part of a Ph.D. thesis and was done at the Aeronautics Depart- 
ment of Imperial College. I would like to thank Dr N. C. Freeman for his help and 
guidance in the theoretical part of the work. I am also very grateful to Mr J. L. 
Stollery who supervised the project and to Dr C.H.Lewis of the Arnold 
Engineering Development Center, who supplied the characteristics solution. The 
Australian Department of Supply gave financial assistance, and thanks are due 
to the Chief Scientist for permission to publish. 
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FIGURE 19. Large parabola (d = 0.225 in.) mounted on sting, showing 
t>raverse mechanism and probes. 

FIGURE 20. Shock-wave shape on parabola, d = 0.100 in. 
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FIGURE 31. Shock-wave shape, rn = Q, d = 0.010 in. 

Plate 2 
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